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Abstract

Parametric probabilistic approaches allow data uncertainties to be modelled, but have some difficulties to represent

model uncertainties. It has been recently shown that both model and data uncertainties can be taken into account with a

non-parametric approach. Moreover, it is known that with increasing complexity of a mechanical system, model

uncertainties also increase. Based on these considerations, both parametric and non-parametric probabilistic approaches

are used on a complex system of aerospace engineering constituted of a satellite coupled with its launcher. First, a

parametric probabilistic model is constructed for analysing the sensitivity of the response due to data uncertainties. Then,

the non-parametric probabilistic model is introduced with the same uncertainty level in order to study the sensitivity of the

response with respect to the model and the data uncertainties. The dynamical responses obtained with these two

probabilistic approaches are analysed in order to quantify the sensitivity of the structure to data uncertainties as well as

model uncertainties.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In structural dynamics, numerical models are used to perform dynamic analyses of complex structural
components of mechanical systems. Every manufacturing process induces physical discrepancies. Conse-
quently, the manufactured system is different from the designed system. These differences can have significant
effects on the dynamics of the structure. In order to construct predictive numerical models, a
mechanical–numerical model is constructed from the designed system using the finite element method. Such
a mechanical–numerical model will be called here the mean finite element model of the structure. It should be
noted that such a deterministic model is usually not sufficient for a robust prediction of the dynamic response
of the structure. In order to increase the robustness of the predictions, this mean model is used for
implementing probabilistic models for taking into account uncertainties. In particular, the robustness of the
predictions are of great relevance to many industrial areas such as aerospace industry.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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The uncertainties can then be splitted in two complementary classes. The first one refers the uncertain
parameters in the mean finite element model describing data uncertainties. The second class is due to
simplifications introduced in the construction of the mean finite element model using the mathematical–
mechanical–numerical modelling process, which cannot be taken into account by the uncertain parameters of
the mean finite element model. In this paper, two probabilistic approaches for modelling random uncertainties
are considered, namely the parametric probabilistic approach for data uncertainties in the mean finite element
model and the non-parametric probabilistic approach for model uncertainties with respect to the mean finite
element model.

The parametric probabilistic approach allows data uncertainties to be modelled by considering the
uncertain parameters of the mean finite element model as random quantities. Such uncertain parameters are
usually the geometrical parameters, the parameters of the constitutive equations and the boundary conditions.
As a consequence, each random finite element matrix results from a deterministic mapping of the random
parameters. It should be noted that parametric approaches are recognised as efficient methods for modelling
data uncertainties and are widely used in computational mechanics (see for instance Refs. [1–7]).

Nevertheless, the parametric probabilistic approach has difficulties to take into account model
uncertainties. For instance, when dealing with a beam structure, the use of the Euler beam theory instead
of the tridimensional elasticity theory corresponds to the introduction of a reduced admissible displacement
field (reduced kinematics). An approach, called the non-parametric probabilistic approach of model
uncertainties, has recently been introduced to take into account model uncertainties. The theoretical concepts
have been introduced and developed in Refs. [8,9] and several experimental validations [10–13] and numerical
validations [14,15] have been carried out. In this paper, the vibration amplitudes are assumed to be sufficiently
small in order that linearised equations can be used. For the vibration problem considered, the existence of
local nonlinearities at certain junctions of the structure can be assumed to be negligible in the frequency band
of analysis. The non-parametric probabilistic approach of model uncertainties proposed here is then
implemented in a linear context. Such a probabilistic approach allows the robustness of a linear numerical
model with respect to model uncertainties for the set of all the possible linear models to be analysed. With such
a non-parametric probabilistic approach, the generalised matrices issued from a mean reduced matrix model
of the structure are replaced by random matrices. The probability distributions of these random matrices are
constructed by using the maximum entropy principle under constraints defined by the available information
and yields a new class of random matrices [8,9,14]. With such a formulation, the global dispersion level of each
random matrix is controlled by a unique positive parameter which is called the dispersion parameter.
Moreover, it is important to note that this methodology can easily be extended to the case of non-
homogeneous random uncertainties [10] and to the case of mistuned cyclic structures with random
uncertainties [16,17] for which dynamical substructuring methods are required and used. Furthermore, it has
been shown (see for instance Refs. [13–15]) that the non-parametric probabilistic approach can represent
model uncertainties. In view of these results, it would be very interesting to apply the parametric probabilistic
approach and the non-parametric probabilistic approach for a complex structure for which the mean finite
element model is simplified. Since the parametric probabilistic approach allows data uncertainties to be
modelled and since the non-parametric probabilistic approach takes into account the model uncertainties, the
main objective of this paper is to show the role played by data uncertainties and by model uncertainties in a
complex dynamical system.

In Section 2, the dynamical equations issued from the parametric probabilistic approach are presented.
Section 3 is devoted to the dynamical equations issued from the non-parametric probabilistic approach.
Section 4 deals with the identification of the dispersion parameters of the non-parametric probabilistic
approach with respect to the parametric probabilistic approach in order to introduce a similar level of
uncertainty for each probabilistic approach. The methodology used for solving the random equations is then
presented in Section 5. Finally, Section 6 is devoted to the analysis of a complex aerospace engineering system.
The system considered is a satellite of the European Space Agency, whose mean model is a large
tridimensional finite element model. Both parametric and non-parametric probabilistic approaches are used
for modelling data uncertainties and model uncertainties in the satellite. Dynamical analyses are carried out
with a similar level of uncertainty for each probabilistic model. Convergence analyses are systematically
performed with respect to the dimension of the reduced model and the number of realisations for statistical
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estimations. Two cases are considered: the free satellite and the satellite coupled with the launcher which is
considered as deterministic in the present work.

1.1. Mathematical notation conventions

In this paper, the following conventions are adopted:
(1)
 A real or complex deterministic scalar is denoted by a lower case letter (for instance f).

(2)
 A real or complex-valued random variable is denoted by an upper case letter (for instance F).

(3)
 A real or complex deterministic vector is denoted by a boldface lower case letter (for instance

f ¼ ðf 1; . . . ; f nÞ).

(4)
 A real or complex-valued random vector is denoted by a boldface upper case letter (for instance

F ¼ ðF1; . . . ;F nÞ).

(5)
 A real or complex deterministic matrix is denoted by an upper case letter between brackets (for instance
½A�).
(6)
 A real or complex-valued random matrix is denoted by a boldface upper case letter between brackets (for
instance ½A�).
(7)
 All the deterministic quantities related to the mean model are underlined (for instance f ; f; ½A�).
2. Random response of the dynamical system with data uncertainties modelled by the parametric

probabilistic approach

2.1. Mean finite element model of the dynamical system

We are interested in the linear vibrations of a lightly damped free structure around a static equilibrium
configuration considered as a natural state without prestresses in the low-frequency band B. For all o in band
B, the mean finite element matrix equation of the structure is written as

ð�o2½M� þ io½D� þ ½K �Þ uðoÞ ¼ fðoÞ, (1)

in which uðoÞ and fðoÞ are the Cm-vectors of the dofs and of the external forces. Since the structure has a free
boundary, the mean mass matrix ½M� is a positive-definite symmetric ðm�mÞ real matrix and the mean
damping and stiffness matrices are positive semidefinite symmetric ðm�mÞ real matrices. Furthermore, it is
assumed that the kernel of mean matrices ½D� and ½K � is identical, constituted of r rigid-body modes with
0prp6 and denoted as u

1
; . . . ;u

r
.

2.2. Parametric model of random uncertainties

Let x ¼ ðx1; . . . ;xmÞ be the R
m-vector whose components describe mechanical parameters such as geometric

parameters of the structure, coefficients of the elasticity tensor, mass density, etc. Consequently, the finite
element mass, damping and stiffness matrices are considered as a function of these parameters. Since these
parameters are uncertain, one then introduces the Rm-valued random variable X ¼ ðX 1; . . . ;X mÞ. The random
finite element model is then written as

ð�o2½Mpar� þ io½Dpar� þ ½Kpar�ÞUparðoÞ ¼ fðoÞ, (2)

in which UparðoÞ is the Cm-valued random vector of the dofs and where ½Mpar� ¼ ½MðXÞ�, and ½Dpar� ¼ ½DðXÞ�,
½Kpar� ¼ ½KðXÞ� are the random finite element mass and damping, stiffness matrices with values in the set of the
positive-definite symmetric ðm�mÞ real matrices and in the set of the positive semidefinite symmetric ðm�mÞ

real matrices. The components fX i; i 2 f1; . . . ; mgg of random vector X are independent Gaussian random
variables of mean value mi ¼ xi and of standard deviation si. A numerical solver adapted to the Monte Carlo
numerical simulation and using a reduced model constructed with random modal analysis [18–21] is used for
calculating the random elastic response.
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3. Random response of the dynamical system with model and data uncertainties modelled by the non-parametric

probabilistic approach

Let us recall that the main idea of the non-parametric probabilistic approach of model and data
uncertainties consists in replacing the generalised matrices of a mean reduced matrix model of the structure by
random matrices whose probability model is constructed with the maximum entropy principle. In particular,
the theoretical construction and the physical concepts of this recent probabilistic approach are detailed in
Refs. [8,9,14,13]. In this section, the main steps for establishing the random equations are summarised.

3.1. Mean reduced matrix model

Since one is interested in the elastic motion of the structure, one then introduces the ðm� nÞ real matrix ½F�
whose columns are the n|m eigenvectors u

a
related to the n strictly positive lowest eigenfrequencies la ¼ o2

a.
The mean reduced matrix model is written as

uðoÞ ¼ ½F� qðoÞ, (3)

in which qðoÞ is the Cn-vector of the generalised coordinates solution of the mean reduced equation

ð�o2½Mred� þ io½Dred� þ ½K red�Þ qðoÞ ¼FðoÞ, (4)

in which FðoÞ ¼ ½F �T fðoÞ is the Cn-vector of the generalised forces and where the mean reduced mass,
damping and stiffness matrices ½Mred� ¼ ½F �

T½M�½F�, ½Dred� ¼ ½F �
T½D�½F� and ½K red� ¼ ½F �

T½K �½F� are positive-
definite symmetric ðn� nÞ real matrices.

3.2. Construction of the non-parametric probabilistic model of model and data uncertainties

The use of the non-parametric probabilistic approach of model and data uncertainties yields the random
matrix equation

ð�o2½M
npar
red � þ io½Dnpar

red � þ ½K
npar
red �ÞQðoÞ ¼FðoÞ, (5)

in which ½Mnpar
red �, ½D

npar
red � and ½K

npar
red � are positive-definite symmetric ðn� nÞ real-valued matrices corresponding

to the random reduced mass, damping and stiffness matrices and where QðoÞ is the Cn-valued random vector
of the random generalised coordinates. The Cm-valued random vector UnparðoÞ is thus reconstructed by

UnparðoÞ ¼ ½F�QðoÞ. (6)

3.2.1. Probability distributions of the random matrices

The positive-definite random matrices ½Mnpar
red �, ½D

npar
red � and ½K

npar
red � are written as

½M
npar
red � ¼ ½LM �

T½GM �½LM �, ð7Þ

½D
npar
red � ¼ ½LD�

T½GD�½LD�, ð8Þ

½K
npar
red � ¼ ½LK �

T½GK �½LK �, ð9Þ

in which ½LM �, ½LD� and ½LK � are diagonal ðn� nÞ real matrices such that ½Mred� ¼ ½LM �
T½LM �, ½Dred� ¼

½LD�
T½LD� and ½Kred� ¼ ½LK �

T½LK �. The probability distribution of random matrices ½GM �, ½GD� and ½GK � is
derived from the maximum entropy principle issued from the information theory [22] with the available
information [8]. It is shown in Refs. [8,9] that random matrices ½GM �, ½GD� and ½GK � are independent random
variables whose dispersion level can be controlled by the positive real parameters dM , dD and dK which are
independent of the dimension n.

Below, ½G� denotes ½GM �, ½GD� or ½GK � and d denotes the corresponding dispersion parameter. The
probability density function of random matrix ½G� with respect to the volume element

~dG ¼ 2nðn�1Þ=4
Y

1pipjpn

dGij, (10)
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is written as

p½G�ð½G�Þ ¼ 1Mþn ðRÞ
ð½G�Þ � CG � ðdetð½G�ÞÞ

ð1�d2Þð2d2Þ�1ðnþ1Þ
� e�ðnþ1Þð2d

2Þ�1 tr½G�, (11)

in which 1Mþn ðRÞ
denotes the indicatrix function of the set of all the symmetric ðn� nÞ real positive-definite

matrices, det is the determinant, tr is the trace and where CG is the positive constant such that

CG ¼
ð2pÞ�nðn�1Þ=4

ððnþ 1Þ=2d2Þnðnþ1Þð2d
2Þ�1Qn

j¼1 Gðððnþ 1Þ=2d2Þ þ ð1� jÞ=2Þ
, (12)

in which GðzÞ is the gamma function defined for all z40 by GðzÞ ¼
R1
0 tz�1e�t dt. Eq. (11) shows that the

entries ½G�jk of the random matrix ½G� are dependent random variables.
The following algebraic representation of the random positive-definite symmetric real matrix ½G� allows a

procedure for the Monte Carlo numerical simulation of the random matrix ½G� to be defined. The random
matrix ½G� is written as

½G� ¼ ½LG�
T½LG�, (13)

in which ½LG� is an ðn� nÞ upper triangular random matrix resulting from the Cholesky factorisation such that
(1)
 the random variables f½LG�jj0 ; jpj0g are independent;

(2)
 for joj0, the real-valued random variable ½LG�jj0 can be written as ½LG�jj0 ¼ snUjj0 in which sn ¼

dðnþ 1Þ�1=2 and where Ujj0 is a real-valued Gaussian random variable with zero mean and variance equal
to 1; ffiffiffiffiffiffiffiffip
(3)
 for j ¼ j0, the positive-valued random variable ½LG�jj can be written as ½LG�jj ¼ sn 2V j in which sn is
defined above and where V j is a positive-valued gamma random variable whose probability density
function pVj

ðvÞ with respect to dv is written as

pVj
ðvÞ ¼ 1RþðvÞ

1

Gðan;jÞ
van;j�1 e�v; an;j ¼

nþ 1

2d2
þ

1� j

2
. (14)
4. Identification of the dispersion parameters of the non-parametric approach with respect to the parametric

approach

Let us recall that the main objective of this paper is to analyse the role played by data uncertainties
and by model uncertainties in the dynamical response of a complex mechanical system. The parametric
probabilistic approach allows data uncertainties to be analysed while the non-parametric probabilistic
approach is proposed to analyse model and data uncertainties. In order to quantify the role played
by each one of the two kinds of uncertainties, it is necessary to introduce the same level of uncertainties
in the two probabilistic approaches. It is assumed that the probability distributions of uncertain
data (parametric probabilistic approach) are given. Then the level of uncertainties of the non-parametric
probabilistic approach has to be defined with respect to the level of uncertainties of the parametric
probabilistic approach. It means that the dispersion parameters dM , dD and dK which control the dispersion
of each random matrix issued from the non-parametric probabilistic approach are then identified with
respect to the parametric probabilistic approach. Since the robustness of any finite element model
can be characterised by its lowest eigenfrequency, the method which is chosen to calibrate the mass
and the stiffness dispersion parameters dM and dK of the non-parametric probabilistic approach, is the
following.

Let Opar
1 and Onpar

1 be the lowest non-zero eigenfrequencies of the dynamical system modelled with the
parametric and the non-parametric probabilistic approaches, respectively. The probability density functions of
the random eigenfrequencies Opar

1 and Onpar
1 denoted by pOpar

1
and pOnpar

1
are then compared in the least square
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sense. The two-dimensional cost function JðdM ; dK Þ is then introduced such that

JðdM ; dK Þ ¼

kpOnpar
1
ðdM ; dK Þ � pOpar

1
kL2

kpOpar
1
kL2

, (15)

in which the norm kf kL2 is given by

kf kL2 ¼

Z
R

jf ðxÞj2 dx

� �1=2

. (16)

The identification is then carried out such that parameters dM and dK minimise the cost function, i.e., are
solution of the optimisation problem

min
dM ;dK

JðdM ; dK Þ. (17)

The dispersion parameter dD is identified by using the identification method proposed in Ref. [16]. Let ½Dpar
red �

be the random generalised damping matrix of the parametric probabilistic approach. The dispersion
parameter dD is then calculated by

dD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W

par
D ðnþ 1Þ

trð½Dred�Þ
2
þ trð½Dred�

2Þ

s
, (18)

in which W
par
D is given by

W
par
D ¼ Efk½D

par
red � � ½Dred�k

2
F g (19)

and where k½A�k2F ¼ trð½A�½A�TÞ.

5. Methodology for solving the random equations and for analysing the random responses

5.1. Convergence analysis of the stochastic system

The Monte Carlo numerical simulation is carried out with ns realisations denoted by y1; . . . ; yns . The forced
response of the stochastic dynamical system is studied in the low-frequency band B. The numerical values of
the dispersion parameters dM , dD and dK are obtained by using the identification procedure described in
Section 4. For each realisation yi, a sample of the random variable Unparðyi;oÞ is calculated in solving Eqs. (5)
and (6). A stochastic convergence analysis is carried out in order to define the number n of modes to be kept
and the number ns of realisations used in the Monte Carlo numerical simulation. The second-order stochastic
convergence is based on the use of the sequence jjjUnparjjj defined by

jjjUnparjjj2 ¼ E

Z
o2B
kUnparðoÞk2 do

� �
, (20)

in which kUnparðoÞk2 is the hermitian norm of random vector UnparðoÞ. The convergence is then analysed in
studying the function ðns; nÞ7!Convðns; nÞ defined by

Convðns; nÞ
2
¼

1

ns

Xns

j¼1

Z
B

kUnparðo; yjÞk
2 do. (21)

5.2. Confidence region of the random response

The confidence region of the random response is constructed for a given probability level Pc. The following
reasoning is valuable for both probabilistic approaches. The exponents npar or par are then omitted in the
notations used below.

Let jobs be an observation node. Let ujobs
ðoÞ be the C3-vector and let Ujobs

ðoÞ be the C3-valued random
variable related to the three translational dofs of node jobs. One then introduces the scalar wjobs

ðoÞ ¼
20 log10ðkujobs

ðoÞkÞ and the random variable W jobs
ðoÞ ¼ 20 log10ðkUjobs

ðoÞkÞ.
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The mean value W 0
jobs
ðoÞ of the random response is then defined by

W 0
jobs
ðoÞ ¼ 20 log10ðjEfkUjobs

ðoÞkgjÞ. (22)

Let o be fixed in B. The quantile function QWjobs
ða;oÞ of the random variable W jobs

ðoÞ is defined by

QWjobs
ða;oÞ ¼ inf

w
F Wjobs

ðw;oÞXa, (23)

in which F Wjobs
ðw;oÞ is the cumulative distribution function of the random variable W jobs

ðoÞ. LeteW jobs
ðy1;oÞo � � �o eW jobs

ðyns ;oÞ be the order statistic associated with W jobs
ðy1;oÞ; . . . ;W jobs

ðyns ;oÞ. The
unbiased estimation of cumulative distribution function F Wjobs

ðw;oÞ is defined by

F̂ Wjobs
;ns ðw;oÞ ¼

1

ns

Xns

k¼1

H0ðw� eW jobs
ðyk;oÞÞ, (24)

in which H0 is such that H0ðxÞ ¼ 1 if xX0 and H0ðxÞ ¼ 0 if not. The upper envelope wjobs ;þ and the lower
envelope wjobs;� delimiting the confidence region with probability level Pc is then given by

wjobs ;þðoÞ ¼
eW jobs
ðykþ ;oÞ; kþ ¼ fixð0:5nsð1þ PcÞÞ, ð25Þ

wjobs ;�ðoÞ ¼
eW jobs
ðyk� ;oÞ; k� ¼ fixð0:5nsð1� PcÞÞ, ð26Þ

in which fixðxÞ is the integer part of real x.

6. Analysis of a complex aerospace engineering system

6.1. Mean finite element model of the free satellite

The mean (nominal) model of the satellite is a refined finite element model with about 120,000 dofs,
provided by the European Space Agency (ESA). It is shown in Fig. 1, where the model is rotated by 90�, as the
z-axis is the vertical axis. The external applied load consists of a harmonic base excitation in the range
½5; 100�Hz, prescribed in terms of the acceleration at the interface of the satellite. In Fig. 1 the interface is
located on the hidden face of the structure, with the surface vector pointing in the negative z-axis. The
prescribed acceleration is enforced with the so-called large mass approach, in which a single, large, fictitious
mass is applied at the base of the structure and a proportionately large force is applied to this mass. In the
present case, the node with the large mass is located at the centre of the circular interface ring and is connected
Fig. 1. Finite element model of the satellite.
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with the interface nodes through rigid beam elements. To avoid unwanted interface rotations, large mass
moments of inertia in the order of the mass have been assigned to the point mass, too. In the range ½5; 25�Hz,
the imposed acceleration is 1g and in the range ½25; 100�Hz, the acceleration amplitude is reduced to 0:8g. A
frequency response analysis has been carried out for the range ½5; 100�Hz. The mean modal damping ratios
x

j
¼ 0:015 and x

j
¼ 0:025 have been assumed for frequencies below 30Hz and for frequencies above 30Hz,

respectively.

6.2. Data for the parametric probabilistic approach

In the parametric probabilistic model, the uncertain parameters of the mean finite element model are
modelled by random variables. This relates both to material and geometric properties of the satellite finite
element model, such as beam section dimensions, composite material fibre orientation, non-structural masses,
elastic moduli, etc. For such a complex structure, it is very difficult to make an a priori assessment of whether
the uncertainty in a given parameter is influential and should be considered or if it can be neglected. Therefore,
the parameters have been classified into various types and for each occurrence of a certain parameter type, an
independent random variable has been defined. The assumed probability distribution and the magnitude of
the variability depend on the parameter type and are reported in Table 1 in Appendix A. For instance, for
Young’s moduli of isotropic materials, the coefficient of variation s=m was assumed to be 0:08. In summary
this approach leads to a total of 1319 independent random variables with coefficient of variations between 0:04
and 0:12. Moreover, in order to adequately account for the significant uncertainty associated with damping,
the coefficient of variation for damping has been assumed to be 0:4 with a log-normal distribution. It should
be noted that the magnitude of the scatter has been selected on the basis of data available in the literature
[23–26].

6.3. Estimation of the dispersion parameters of the non-parametric probabilistic approach

The probability distribution pOpar
1

introduced in Section 4 is estimated with ns ¼ 1500 realisations. Then the

minimisation of function JðdM ; dK Þ yields dM ¼ 0:14217 and dK ¼ 0:13487. Fig. 2 shows the probability
distributions O 7!pOpar

1
ðOÞ (thin line) and O7!pOnpar

1
ðOÞ (thick line). It can be seen that the two probability

density functions issued from both probabilistic approaches match reasonably well. Concerning the dispersion
parameter dD whose expression is given by Eq. (18), Fig. 3 shows the estimation of dD with respect to the
number ns of realisations used for the Monte Carlo simulation. It can be seen that a good convergence is
reached for ns ¼ 300 and yields dD ¼ 0:4166.
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6.4. Convergence analysis of the stochastic system

The Monte Carlo numerical simulation is carried out with ns realisations denoted by y1; . . . ; yns . The
stochastic mechanical system is studied in the low-frequency band B ¼ ½5; 100�Hz with the following values of
the dispersion parameters dM ¼ 0:14217; dD ¼ 0:4166; dK ¼ 0:13487. Fig. 4 displays the graph of the function
ns 7!20 log10 ðConvðns; nÞÞ for n ¼ 294. It can be seen that a good convergence with respect to the Monte Carlo
numerical simulation is obtained for ns ¼ 750. Fig. 5 shows the graph of the function n 7!20 log10 ðConvðns; nÞÞ
for ns ¼ 750. It can be seen that a good approximation is obtained for n ¼ 150.

6.5. Context of the analysis

In previous works, it has been shown that the confidence region constructed with the non-parametric
probabilistic approach from a mean model of a structure was able to capture the experimental frequency
response function in presence of model uncertainties which was not the case for the confidence region
constructed with the parametric probabilistic approach adopted to take into account data uncertainties (see
for instance for theoretical explanations [14,13] and for numerical and experimental validations [10,12,15]).
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Fig. 3. Identification of dispersion parameter dD: graph of ns 7!dD.
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The observations gathered from these previous investigations show that the non-parametric probabilistic
approach is representative of actual model uncertainties. With respect to the problems studied in this paper,
these previous observations are fundamental in that they explain and justify differences in the results obtained
with the two considered probabilistic approaches. These differences are due to the fact that the parametric
probabilistic approach takes into account data uncertainties while the non-parametric one takes into account
both model and data uncertainties. Indeed, the presence of significant model uncertainties is unavoidable in
the present case, due to the complexity of the considered structure: clearly the mean finite element model is
based on numerous simplifying assumptions, for instance concerning the representation of internal equipment
components. As opposed to previous studies, in the present case no directly related experimental data
concerning the dynamic response of the manufactured satellite are available, due to the complexity of the
structural system. This is however not detrimental for the objective of this paper, which consists in assessing
the robustness of the numerical model of the spacecraft with respect to data uncertainties on one hand and to
data and model uncertainties on the other hand. For this purpose the parametric probabilistic model is first
constructed in order to analyse the robustness with respect to data uncertainties. The non-parametric
probabilistic model is then calibrated by introducing the same level of dispersion and used to assess the
robustness with respect to data and model uncertainties.

6.6. Confidence region estimation of the random response of the free satellite

In order to simplify the notations, indicial exponents npar and par are omitted.
One considers the random response of the free satellite at the node jobs (see Fig. 1) in low-frequency band B.

The numerical calculations are carried out with n ¼ 150 and ns ¼ 1500. Figs. 6 and 7 display the graphs of the
confidence region of the random displacements of the node jobs obtained for a probability level equal to 0:96
and constructed with the quantile method. The thick dashed–dotted line shows the graph n 7!wjobs

ðnÞ, in which

n ¼ o=ð2pÞ is the circular frequency in Hertz. The thin dotted line corresponds to n 7!W 0
jobs
ðnÞ. The confidence

region corresponds to the gray filled zone whose envelopes are delimited by the mappings n 7!w�jobs
ðnÞ and

n 7!wþjobs
ðnÞ and calculated for the frequency band ½15; 100�Hz. Fig. 6 corresponds to the parametric

probabilistic modelling whereas Fig. 7 corresponds to the non-parametric probabilistic modelling. From
Figs. 6 and 7, it can be seen that the confidence region obtained are similar for frequencies lower than 25Hz
which means that model uncertainties are small with respect to data uncertainties in this low-frequency band.
For frequencies greater than 25Hz, Figs. 6 and 7 show that model uncertainties are significant and increase
with the frequency. In addition, it should be noted that the mean of the random response obtained with the
non-parametric approach is very different from the response of the mean model. Furthermore, there exist
frequencies for which the response of the mean model is outside from the confidence region. On the contrary,



ARTICLE IN PRESS

20 40 60 80 100
-100

-90

-80

-70

-60

-50

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

Fig. 6. Confidence region of random displacement related to the node jobs (in dB) over a low frequency band B ¼ ½15; 100�Hz and

obtained with the parametric probabilistic approach: deterministic response of the mean model (thick dashed–dotted line), mean of the

random response for the stochastic model (mid thin dotted line), lower and upper envelopes of the confidence region corresponding to a

probability level equal to 0:96 (dark grey filled zone).
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Fig. 7. Confidence region of random displacement related to the node jobs (in dB) over a low frequency band B ¼ ½15; 100�Hz and

obtained with the non-parametric probabilistic approach: deterministic response of the mean model (thick dashed–dotted line), mean of

the random response for the stochastic model (mid thin dotted line), lower and upper envelopes of the confidence region corresponding to

a probability level equal to 0:96 (dark grey filled zone).
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this phenomenon is not present for the random response obtained with the parametric probabilistic model
displayed in Fig. 6. This is due to the fact that the non-parametric probabilistic approach has the capability to
take into account model uncertainties and not only data uncertainties. From these results, it can be concluded
that the numerical model of the free satellite is robust to data and model uncertainties in frequency band
½15; 25�Hz, stays robust to data uncertainties in ½25; 58�Hz and is not robust to model uncertainties in the
frequency band ½25; 100�Hz.

6.7. Mean finite element model of the satellite coupled with its launcher

The mean model of the coupled mechanical system is three-dimensional finite element model. The finite
element model of the launcher is decomposed in four subdomains which are two symmetric solid propellant
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boosters (EAPM, EAPP), a main stage with liquid propellant tanks (EPC) and the upper composite (UC)
which contains the satellite. The assembled finite element model of the mechanical system is shown in Fig. 8.
The coupled launcher–satellite system is subjected to a deterministic excitation which corresponds to a
pressure oscillation distributed along the longitudinal direction of the each booster with opposite phases.

6.8. Confidence region estimation of the random response of the coupled launcher– satellite system

In the present case, the launcher model is assumed to be deterministic, while uncertainties are associated
with the satellite model. Hence, the uncertainties in the coupled system are non-homogeneous. The
implementation of the non-parametric probabilistic approach for non-homogeneous uncertainties requires to
describe the mechanical system by dynamic substructuring [10]. The coupled system is constituted of five
substructures. The dynamic substructuring method used is the Craig–Bampton modal synthesis method [27].

For the non-parametric probabilistic approach of uncertainties in the solution for the coupled system, the
numerical analysis is carried out in the low frequency band ½5; 54�Hz with ns ¼ 1500. The dispersion
parameters for the solution are those defined in Section 6.4. Fig. 9 displays the graph of the confidence region
for the random displacements at the node jobs with a probability level equal to 0:96. The thick dashed–dotted
line shows the graph n 7!wjobs

ðnÞ with n ¼ o=ð2pÞ the circular frequency. The thin dotted line corresponds to

n 7!W 0
jobs
ðnÞ. The confidence region corresponds to the gray filled zone whose envelop are delimited by the

mappings n 7!w�jobs
ðnÞ and n 7!wþjobs

ðnÞ. Fig. 9 shows that the larger the frequency, the larger the confidence

region, which is coherent with the fact that the sensitivity of model uncertainties increases with frequency.
Again two frequency zones can be distinguished. For frequencies lower than 30Hz, the confidence region is
narrow and centred around the response of the mean model. This means that the numerical model of the
coupled system is robust to model and data uncertainties in the satellite. On the other hand, Fig. 9 shows that
the sensitivity to model and data uncertainties increase with the frequency and is significant in frequency band
½30; 54�Hz. Then, a gap between the mean of the random response and between the response of the mean
model appears at 30Hz, and goes on increasing with respect to the frequency. Consequently, the random
response seems to be very sensitive to model uncertainties for frequencies greater than 30Hz.

6.9. Robustness of the numerical model of the coupled system with respect to model and data uncertainties

The analysis is performed in the frequency band ½30; 54�Hz for the parametric and the non-parametric
probabilistic approaches. Fig. 10 displays the confidence region constructed with the parametric probabilistic
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Fig. 9. Confidence region of random displacement related to the node jobs (in dB) over the low frequency band ½5; 54�Hz and obtained

with the non-parametric probabilistic approach: deterministic response of the mean model (thick dashed–dotted line), mean of the random
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level equal to 0:96 (dark grey filled zone).
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Fig. 10. Confidence region of random displacement related to the node jobs (in dB) over the low frequency band ½30; 54�Hz and obtained

with the parametric probabilistic approach: deterministic response of the mean model (thick dashed–dotted line), mean of the random
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approach and Fig. 11 with the non-parametric probabilistic approach. Fig. 10 shows that the random response
of the satellite coupled with the launcher is more robust with respect to data uncertainties in the frequency
band ½44; 54�Hz than in the frequency band ½30; 44�Hz. Fig. 11 shows that the robustness of the response is
small with respect to model uncertainties in the frequency band ½30; 54�Hz. It should be noted that the
response is more sensitive to model uncertainties in the frequency band ½44; 54�Hz than in the frequency band
½30; 44�Hz.

7. Synthesis of the results and conclusion

Although the dispersion level related to the random uncertainties of the satellite is the same for both
probabilistic approaches, for the random forced responses the two approaches yield somewhat differing
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results. This can be explained by the fact that the approaches concentrate on different types of uncertainty.
The parametric one models data uncertainties while the non-parametric one models both data and model
uncertainties. In the frequency band ½15; 25Hz� (for the free satellite) or ½5; 30Hz� (for the coupled
launcher–satellite system), the numerical model is relatively robust with respect to data uncertainties and to
model uncertainties and, in addition is not really sensitive to model uncertainties, data uncertainties being
preponderant. For higher frequencies, ½25; 100Hz� (for the free satellite) or ½30; 54Hz� (for the coupled
launcher–satellite system), it can be seen that the numerical model is not robust to model uncertainties. The
results show then that the numerical model used for the satellite and the coupled launcher–satellite system are
more sensitive to model uncertainties than to data uncertainties. Hence, it can be concluded that the two
probabilistic approaches are complementary. The parametric probabilistic approach is useful to estimate the
robustness with respect to the data uncertainties. Both parametric and non-parametric probabilistic
approaches are required to give an estimation of the robustness with respect to model uncertainties.
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Appendix A. Assumptions for the parametric probabilistic approach

Table 1 shows the assumptions made for the random variables representing the uncertain model parameters
in the parametric probabilistic approach. Specifically, the table specifies the distribution type and the
magnitude of the scatter, expressed in terms of the coefficient of variation (CoV), i.e. the ratio between
standard deviation s and the mean m. An exception is made for the fibre orientation angle, where the mean is
zero and the CoV thus not defined; the standard deviation is provided instead. A truncated normal
distribution has been assumed for all uncertain parameters, with the exception of the damping parameters
modelled by a log-normal distribution.
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Table 1

Table of random properties of uncertain parameters for modelling data uncertainties in the parametric probabilistic approach

Element/material type Property CoV (s=m) Probability distribution

Isotropic material Young’s modulus 8% Truncated Gaussian

Poisson’s ratio 3%

Shear modulus 12 %

Mass density 4%

Orthotropic shell Young’s modulus 8% Truncated Gaussian

element material Poisson’s ratio 3%

Shear modulus 12%

Mass density 4%

Solid element anisotropic Mat. property matrix 12% Truncated Gaussian

isotropic material Mass density 4%

Simple Beam Section dimension 5% Truncated Gaussian

Non-structural mass 8%

Layered composite Non-structural mass 8% Truncated Gaussian

material Thickness of plies 12%

Orientation angle s ¼ 1:5
Spring element property Elastic prop. value 8% Truncated Gaussian

Shell element Membrane thickness 4% Truncated Gaussian

Non-structural mass 8%

Spring element Stiffness 10% Truncated Gaussian

Concentrated mass Mass 3% Truncated Gaussian

Damping Modal damping 40% Log-normal

Structural damping 25%
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[5] G. Schuëller (Ed.), A state-of-the-art report on computational stochastic mechanics, Probabilistic Engineering Mechanics 12 (4) (1997)

197–321.
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spacecraft structures and their components, AIAA Journal 36 (8) (1998) 1509–1515.

[26] S. Simonian, Survey of spacecraft damping measurements: applications to electro-optic jitter problems, The Role of Damping in

Vibration and Noise Control, ASME Publication, Vol. DE-5, ASME editions, New York 1987, pp. 287–292.

[27] R. Craig, M. Bampton, Coupling of substructures for dynamic analyses, AIAA Journal 6 (7) (1968) 1313–1319.


	Data and model uncertainties in complex aerospace �engineering systems
	Introduction
	Mathematical notation conventions

	Random response of the dynamical system with data uncertainties modelled by the parametric �probabilistic approach
	Mean finite element model of the dynamical system
	Parametric model of random uncertainties

	Random response of the dynamical system with model and data uncertainties modelled by the non-parametric probabilistic approach
	Mean reduced matrix model
	Construction of the non-parametric probabilistic model of model and data uncertainties
	Probability distributions of the random matrices


	Identification of the dispersion parameters of the non-parametric approach with respect to the parametric approach
	Methodology for solving the random equations and for analysing the random responses
	Convergence analysis of the stochastic system
	Confidence region of the random response

	Analysis of a complex aerospace engineering system
	Mean finite element model of the free satellite
	Data for the parametric probabilistic approach
	Estimation of the dispersion parameters of the non-parametric probabilistic approach
	Convergence analysis of the stochastic system
	Context of the analysis
	Confidence region estimation of the random response of the free satellite
	Mean finite element model of the satellite coupled with its launcher
	Confidence region estimation of the random response of the coupled launcher-satellite system
	Robustness of the numerical model of the coupled system with respect to model and data uncertainties

	Synthesis of the results and conclusion
	Acknowledgements
	Assumptions for the parametric probabilistic approach
	References


